Mergers of Dark Matter Admixed Neutron Stars

Hannes Rüter*1, Mattia Emma2, Edoardo Giangrandi3, Violetta Sagun3, Tim Dietrich4, and Wolfgang Tichy5

1Instituto Superior Técnico – Portugal
2Royal Holloway [University of London] – United Kingdom
3University of Coimbra [Portugal] – Portugal
4University of Potsdam – Germany
5Florida Atlantic University [Boca Raton] – United States

Abstract

We investigate mergers of neutron stars consisting of two non-interacting fluids minimally coupled to the gravitational field using the numerical relativity code BAM. The first fluid represents baryonic matter, whereas the second fluid models dark matter, which we describe using the equation of state of a degenerate Fermi gas. We consider different scenarios for the distribution of the dark matter, ranging from dark matter confined to the core of the stars to scenarios in which the dark matter extends beyond the surface of the baryonic matter forming a halo around the baryonic component of the stars. We investigate how the dark matter impacts the binary dynamics and remnant properties.

*Speaker